Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

Third Semester B.E. Degree Examination, June/July 2018 Material Science & Metallurgy

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 Illustrate the following point defects which disrupt the perfect arrangement of the surrounding atoms in a crystal structure. (15 Marks)
 - Vacancy (i)
- (ii) Interstitial atom
- (iii) Small substitutional atom
- (iv) Large substitutional atom.
- (v) Frenkel defect.
- What is atomic diffusion? Mention any 3 examples of diffusion.

(05 Marks)

- 2 Discuss how the stress-strain behavior of iron varies with temperature.
- (12 Marks)
- An aluminum specimen originally 300 mm long is pulled in tension with a stress of 280 MPa. If the deformation is entirely elastic, what will be the resultant elongation? E for Aluminum is 69 GPa. (03 Marks)
- A tensile stress is applied along the longitudinal direction of a cylindrical aluminum rod that has a diameter of 10 mm. Determine the magnitude of the load required to produce 2.5×10^{-3} mm change in diameter, if the deformation is entirely elastic. E for aluminum is 69 GPa, Poisson's ratio for Al is 0.33.
- Present a schematic representation of the typical constant load creep behavior of metals and discuss.
 - What is fatigue limit? Also, discuss the stress amplitude (s) versus logarithm of the number of cycles (N) to fatigue failure of metals for, (i) a material that displays a fatigue limit and (ii) a material that does not display a fatigue limit.
- Explain with necessary diagrams, how the macrostructure (ingot structure) of a casting develops during solidification. (12 Marks)
 - b. State the Gibbs phase rule.

(02 Marks)

Explain the Hume-Rothery rules for extensive solid solubility of one element in another.

(06 Marks)

PART - B

- 5 Illustrate the microstructures for an iron-carbon alloy of eutectoid composition, above and below the eutectoid temperature. (12 Marks)
 - b. Determine the composition of each phase in a Cu-40% Ni alloy at 1300°C, 1270°C, 1250°C and 1200°C (Use Fig. Q5 (b)). (08 Marks)

Fig. Q5 (b)

10MEA/AUA302

6 a. Illustrate the formation of quench cracks in steels, when they are quenched. Also, discuss the marquenching heat treatment designed to reduce residual stresses and quench cracking.

(10 Marks

- b. Illustrate the setup for the Jominy test used for determining the hardenability of steel. Also show hardenability curves for several steels. (10 Marks)
- 7 a. Show schematically the microstructures of the following types of cast iron: Gray iron. White iron, Malleable iron, ductile iron and compacted graphite iron. (10 Marks)
 - b. List the properties and applications of copper and aluminum alloys. (10 Marks)
- 8 a. What are composite materials? How they are classified?

(07 Marks)

b. Illustrate the following production methods:

- (i) Hand lay-up method for molding fiber reinforced plastic.
- (ii) Filament winding process for producing fiber-reinforced plastic composite material. (10 Marks)
- c. Schematically represent the following types of fiber reinforced composites:
 - (i) Continuous and aligned fibers.
 - (ii) Discontinuous and aligned fibers.
 - (iii) Discontinuous and randomly oriented fibers.

(03 Mark

* * * *